
Koushik Viswanathan

 Ray tracing – more formally termed Ray casting,
as we follow only primary rays, from the source
to the detector [1][2]

 As is well known, spawn one ray per detector
pixel and follow its path through space

 Use of a triangular mesh – Employ ray-triangle
intersections tests along path of the ray [3]

 Sort intersection points by distance from source
and compute path lengths in-between them

 A brief recap of the algorithm:
 For each pixel of the detector

 Start a ray, going backwards towards the source, set
rayValue(i,j) = 0

 Perform bounding box intersection query, if successful,

 Perform ray-triangle intersection query, with the sorted triangle list
obtained from the CAD model

 Sort all collision points by distance from source

 Since there are even no. of collisions (closed mesh) compute
distances between successive points, add all of them and set
rayValue(i,j) = distance * attenuation

 Set pixel value = rayValue(i,j)

 As is known, ray-tracing is inherently
parallelizable, so we employ multi-threading
to reduce total computation time

 Tests performed with CPU and GPU multi-
threading

 Upto 10x speedup from the initial serial
processing

 GPU acceleration improved on CPU multi-
threading, implemented with CUDA

 GPU: nVidia GeForce 8600GT
 Clock speed of 1.19 GHz

 4 multi-processors, 32 cores
 Same test case:

 512x512 pixel detector

 Object: 571 vertices and 517 triangles

 One CUDA thread per ray traced
 Scan time: Average of 3.39 seconds! (nearly

10x reduction)

 The Ray Tracing technique is a per-pixel operation and
scales linearly with simulated detector size

 With an increase in polygon count, number of
intersection tests increases drastically

 Use of octrees/ KD-Trees can offset this limitation

 Spatial data structures work very well in graphics
rendering

 CAD models being extremely dense, spatial subdivision
techniques will not work out as well for triangular meshes

 They would work better in case of voxelized analysis and
simulations [7]

 An alternative technique exists, heavily inspired

by traditional Z-buffer based Rasterization

methods used widely in computer graphics [4]

 Advantage – each face is tested exactly once.

The algorithm is expected to scale near-linearly

with number of faces

 As number of faces goes approx. beyond the

order of 10,000, scalability becomes important

 What Freud et.al. do in [4] is project the face
onto the detector, use the face-plane
equation and determine the intersection
point of the ray spawned from pixels inside
the face’s projection

 Determination of pixels within the face’s
projection are done using traditional
polygon-filling techniques, used in
rasterization [5]

Test case:
 CAD model with 13328 faces
 Image size = 200 x 1000 pixels
 Simulation time (Geometric) = ~0.1 – 1s

 Widely used algorithm, used in various similar
imaging simulation applications

 Casting applications – Use of a triangular mesh for
simulating radiography [6]

 Same group – Use of voxels and a ray-box
intersection scheme [7], inspired by the same
algorithm [4]

 Simulation times with triangular meshes are
not frequently reported

Break up of the actual algorithm as described in
[4]:

1. Project all object vertices onto the detector plane

2. Scan each facet’s projection to identify pixels whose
center is located inside the facet’s projection

3. For each of the previous pixels, calculate the
position of the intersection point on the facet

4. For each ray (or pixel), determine the attenuation
path length L in the object and store it in an ‘L-
buffer’

 In the algorithm described by [4], there are two major

steps – the pixel information determination (step 2)

and the intersection point computation (step 3)

 Traditional polygon-filling algorithms work by

determining the intersection of scan lines (of the

raster) with the edges of the polygon

 Once interior points are determined, algorithm [4]

then reverse calculates the intersection point of the

ray with the facet

 We could, in theory, combine steps 2 and 3
into one, in order to reduce computation time

 The idea is to replace step 2 with an
alternative technique

 Based on the barycentric coordinate system for a
triangle

 Uniqueness of barycentric coordinates of a point
irrespective of projection

 3-Tuple describing any interior point in a
triangle in terms of distances from the 3
vertices

 Linearly dependant coordinates, only 2
independent coordinates actually needed

 Represented by (u,v,1-u-v)

 Key property: Barycentric coordinates of an
interior point of a triangle remain the same
irrespective of which plane it is projected on

The proposed modified projection algorithm is as follows

1. Project each of the triangular facets onto the detector, after
the required transformation

2. Compute the Minimum Bounding Rectangle (MBR) for the
projected triangle

3. For each pixel inside the MBR, compute the barycentric
coordinates (u,v), reject if u,v<0 or u+v>1

4. Using the barycentric coordinates, interpolate the depth d of
the face-pixel from the source position, and store it in a buffer
L, biased by the relative direction between the face normal
and the line joining source to current pixel

5. Once all triangles are checked, buffer L yields final result

Potential problem with the proposed algorithm
is that a lot more computations are needed to
determine the barycentric coordinates
 Exploit the large coherence between successive pixels

inside the MBR!

 Pre-computing edges of each of the faces,
computation complexity per face is O(n) where n is
size of the MBR in pixels

 As n is usually very low compared to the detector size
for a well-tessellated model, computation time per
face is relatively low

 Largest gains are seen in models with a huge
number of triangles as the results shown later
indicate

 For highly detailed models, area occupied and
hence size of MBR are very small, so relative
computation difference per face is very low –
sometimes the net computation time is lesser!

 Models that previously couldn’t be simulated
with standard ray-tracing, can now be easily
handled

 Very few papers actually report scan times as well as test
model complexity quantitatively

 Freud et.al. [4] report scan times of ~0.5 sec for a model of
13328 triangles

 Bellon et.al. [8] reported ~35 sec for a 2048x2048 pixel
detector, for a model containing over 100,000 triangles

 Reiter el.al. [9] have made a comparison between two
implementations – one on a multi-core CPU and another on
a GPU. They’ve reported simulation time of ~1.1 seconds for
a 200,000 triangle model with a 2048x2048 pixel detector,
using a GPU and approx. 9.7 seconds using a multi-core CPU

The proposed algorithm was tested with a model
consisting of over 800,000 triangles, and with a
2048x2048 pixel detector, took approx 20 seconds
on an Intel Pentium 4, 3.0GHz Processor

 This is more than 4 times as many triangles as the test
model in [9] and more than 8 times as many triangles
as the model used in [8]

 Computation times are highly dependant on the
number of pixels being affected, so a direct
comparison is not easily possible

A few popular CAD models were run through the
algorithm. The results for a geometric simulation, with a
512x512 pixel detector are summarized in the table
below

Model Faces Time1 (s) Time2 (s) Time3 (s) Time4 (s) Time5 (s) Average (s)

Bunny 53,582 0.396 0.392 0.393 0.391 0.392 0.3928

Horse 96,967 0.375 0.374 0.376 0.372 0.373 0.374

Dragon 871,414 1.27 1.287 1.287 1.272 1.27 1.2772

 The models used for testing were taken from
the Stanford 3D Scanning repository,
maintained by the Stanford Computer
Graphics Laboratory

 Simulation times reported on the previous
slide were obtained on a modest Pentium IV,
3.0 GHz PC with 512 MB of RAM, running
Windows XP Professional

The Stanford Bunny
35,947 vertices
53, 582 faces

Simulated radiographic
projection
512x512 pixel detector
NOTE: The holes at the
bottom are present in the
original model, below the
feet. Since this is a cone-
beam projection, they are
projected onto the detector

Horse model
Courtesy Cyberware, Inc.
48,485 vertices
96,967 faces

Simulated radiographic
projection
Using a 512x512 pixel
detector

Chinese Dragon
Source: Stanford Computer
Graphics Laboratory
566,098 vertices
871,414 faces

Simulated radiographic
projection
Again using a 512x512 pixel
detector

1. Nicolas Freud, Philippe Duvauchelle, Daniel Babot, “Simulation of X-Ray NDT Imaging Techniques”,
15th WCNDT, Roma, 2000

2. Philippe Duvauchelle, Nicolas Freud, Valerie Kaftandjian, Daniel Babot, “A computer code to simulate
X-ray imaging techniques”, Nuclear Instruments and Methods in Physics Research B 170 (2000) 245-58

3. T.Möller, B.Trumbore, "Fast, Minimum Storage Ray-Triangle Intersection", Journal of Graphics Tools,
vol. 2, 21-28, 1997

4. N. Freud, P. Duvauchelle, J.M. Le´tang, D. Babot, “Fast and robust ray casting algorithms for virtual X-
ray imaging”, Nuclear Instruments and Methods in Physics Research B 248 (2006) 175–180

5. J.D. Foley, A. van Dam, S.K. Feiner, J.F. Hughes, Computer Graphics: Principles and Practice in C, second
ed., Addison-Wesley, Boston, 1997, p. 1175

6. Ning Li, Sung-Hee Kim, Ji-Hyun Suh, Sang-Hyun Cho, Jung-Gil Choi, Myoung-Hee Kim, “Virtual X-ray
imaging techniques in an immersive casting simulation environment”, Nuclear Instruments and
Methods in Physics Research B 262 (2007) 143–152

7. Ning Li, Hua-Xia Zhao, Sang-Hyun Cho, Jung-Gil Choi, Myoung-Hee Kim, “A fast algorithm for voxel-
based deterministic simulation of X-ray imaging “- Computer Physics Communications 178 (2008) 518–
523

8. Carsten Bellon, Gerd-Rüdiger Jaenisch, “aRTist – Analytical RT Inspection Simulation Tool”,
International Symposium on Digital industrial Radiology and Computed Tomography, June 25-27, 2007

9. M.Reiter, M.M.Malik, C.Heinzl, D.Salaberger, E.Gröller, H.Lettenbauer, J.Kastner, “Improvement of X-
Ray image acquisition using a GPU based 3DCT simulation tool “, International Conference on Quality
Control by Artificial Vision, May 2009.

Realtime scan simulation

