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 Ray tracing – more formally termed Ray casting, 
as we follow only primary rays, from the source 
to the detector [1][2]

 As is well known, spawn one ray per detector 
pixel and follow its path through space

 Use of a triangular mesh – Employ ray-triangle 
intersections tests along path of the ray [3]

 Sort intersection points by distance from source 
and compute path lengths in-between them



 A brief recap of the algorithm:
 For each pixel of the detector

 Start a ray, going backwards towards the source, set 
rayValue(i,j) = 0

 Perform bounding box intersection query, if successful,

 Perform ray-triangle intersection query, with the sorted triangle list 
obtained from the CAD model

 Sort all collision points by distance from source

 Since there are even no. of collisions (closed mesh) compute 
distances between successive points, add all of them and set 
rayValue(i,j) = distance * attenuation

 Set pixel value = rayValue(i,j)



 As is known, ray-tracing is inherently 
parallelizable, so we employ multi-threading 
to reduce total computation time

 Tests performed with CPU and GPU multi-
threading

 Upto 10x speedup from the initial serial 
processing

 GPU acceleration improved on CPU multi-
threading, implemented with CUDA





 GPU: nVidia GeForce 8600GT
 Clock speed of 1.19 GHz

 4 multi-processors, 32 cores
 Same test case:

 512x512 pixel detector

 Object: 571 vertices and 517 triangles

 One CUDA thread per ray traced
 Scan time: Average of 3.39 seconds! (nearly 

10x reduction)



 The Ray Tracing technique is a per-pixel operation and 
scales linearly with simulated detector size

 With an increase in polygon count, number of 
intersection tests increases drastically

 Use of octrees/ KD-Trees can offset this limitation

 Spatial data structures work very well in graphics 
rendering

 CAD models being extremely dense, spatial subdivision 
techniques will not work out as well for triangular meshes

 They would work better in case of voxelized analysis and 
simulations [7]



 An alternative technique exists, heavily inspired 

by traditional Z-buffer based Rasterization 

methods used widely in computer graphics [4]

 Advantage – each face is tested exactly once. 

The algorithm is expected to scale near-linearly 

with number of faces

 As number of faces goes approx. beyond the 

order of 10,000, scalability becomes important



 What Freud et.al. do in [4] is project the face 
onto the detector, use the face-plane 
equation and determine the intersection 
point of the ray spawned from pixels inside 
the face’s projection

 Determination of pixels within the face’s 
projection are done using traditional 
polygon-filling techniques, used in 
rasterization [5]



Test case:
 CAD model with 13328 faces
 Image size = 200 x 1000 pixels
 Simulation time (Geometric) = ~0.1 – 1s



 Widely used algorithm, used in various similar 
imaging simulation applications

 Casting applications – Use of a triangular mesh for 
simulating radiography [6]

 Same group – Use of voxels and a ray-box 
intersection scheme [7], inspired by the same 
algorithm [4]

 Simulation times with triangular meshes are 
not frequently reported



Break up of the actual algorithm as described in 
[4]:

1. Project all object vertices onto the detector plane

2. Scan each facet’s projection to identify pixels whose 
center is located inside the facet’s projection

3. For each of the previous pixels, calculate the 
position of the intersection point on the facet

4. For each ray (or pixel), determine the attenuation 
path length L in the object and store it in an ‘L-
buffer’



 In the algorithm described by [4], there are two major 

steps – the pixel information determination (step 2) 

and the intersection point computation (step 3)

 Traditional polygon-filling algorithms work by 

determining the intersection of scan lines (of the 

raster) with the edges of the polygon

 Once interior points are determined, algorithm [4] 

then reverse calculates the intersection point of the 

ray with the facet



 We could, in theory, combine steps 2 and 3 
into one, in order to reduce computation time

 The idea is to replace step 2 with an 
alternative technique

 Based on the barycentric coordinate system for a 
triangle

 Uniqueness of barycentric coordinates of a point 
irrespective of projection



 3-Tuple describing any interior point in a 
triangle in terms of distances from the 3 
vertices

 Linearly dependant coordinates, only 2 
independent coordinates actually needed

 Represented by (u,v,1-u-v)

 Key property: Barycentric coordinates of an 
interior point of a triangle remain the same 
irrespective of which plane it is projected on



The proposed modified projection algorithm is as follows

1. Project each of the triangular facets onto the detector, after 
the required transformation

2. Compute the Minimum Bounding Rectangle (MBR) for the 
projected triangle

3. For each pixel inside the MBR, compute the barycentric
coordinates (u,v), reject if u,v<0 or u+v>1

4. Using the barycentric coordinates, interpolate the depth d of 
the face-pixel from the source position, and store it in a buffer 
L, biased by the relative direction between the face normal 
and the line joining source to current pixel

5. Once all triangles are checked, buffer L yields final result



Potential problem with the proposed algorithm 
is that a lot more computations are needed to 
determine the barycentric coordinates
 Exploit the large coherence between successive pixels 

inside the MBR!

 Pre-computing edges of each of the faces, 
computation complexity per face is O(n) where n is 
size of the MBR in pixels

 As n is usually very low compared to the detector size 
for a well-tessellated model, computation time per 
face is relatively low



 Largest gains are seen in models with a huge 
number of triangles as the results shown later 
indicate

 For highly detailed models, area occupied and 
hence size of MBR are very small, so relative 
computation difference per face is very low –
sometimes the net computation time is lesser!

 Models that previously couldn’t be simulated 
with standard ray-tracing, can now be easily 
handled



 Very few papers actually report scan times as well as test 
model complexity quantitatively

 Freud et.al. [4] report scan times of ~0.5 sec for a model of 
13328 triangles

 Bellon et.al. [8] reported ~35 sec for a 2048x2048 pixel 
detector, for a model containing over 100,000 triangles

 Reiter el.al. [9] have made a comparison between two 
implementations – one on a multi-core CPU and another on 
a GPU. They’ve reported simulation time of ~1.1 seconds for 
a 200,000 triangle model with a 2048x2048 pixel detector, 
using a GPU and approx. 9.7 seconds using a multi-core CPU



The proposed algorithm was tested with a model 
consisting of over 800,000 triangles, and with a 
2048x2048 pixel detector, took approx 20 seconds 
on an Intel Pentium 4, 3.0GHz Processor

 This is more than 4 times as many triangles as the test 
model in [9] and more than 8 times as many triangles 
as the model used in [8]

 Computation times are highly dependant on the 
number of pixels being affected, so a direct 
comparison is not easily possible



A few popular CAD models were run through the 
algorithm. The results for a geometric simulation, with a 
512x512 pixel detector are summarized in the table 
below

Model Faces Time1 (s) Time2 (s) Time3 (s) Time4 (s) Time5 (s) Average (s)

Bunny 53,582 0.396 0.392 0.393 0.391 0.392 0.3928

Horse 96,967 0.375 0.374 0.376 0.372 0.373 0.374

Dragon 871,414 1.27 1.287 1.287 1.272 1.27 1.2772



 The models used for testing were taken from 
the Stanford 3D Scanning repository, 
maintained by the Stanford Computer 
Graphics Laboratory

 Simulation times reported on the previous 
slide were obtained on a modest Pentium IV, 
3.0 GHz PC with 512 MB of RAM, running 
Windows XP Professional



The Stanford Bunny
35,947 vertices
53, 582 faces



Simulated radiographic 
projection
512x512 pixel detector
NOTE: The holes at the 
bottom are present in the 
original model, below the 
feet. Since this is a cone-
beam projection, they are 
projected onto the detector



Horse model
Courtesy Cyberware, Inc.
48,485 vertices
96,967 faces



Simulated radiographic 
projection
Using a 512x512 pixel 
detector



Chinese Dragon
Source: Stanford Computer 
Graphics Laboratory
566,098 vertices
871,414 faces



Simulated radiographic 
projection
Again using a 512x512 pixel 
detector
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Realtime scan simulation


